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Introduction
Abstract

•N-point Fast Fourier Transform (FFT) in VLSI 
Requires multiplication of data by one of N constant terms.

Multiple Constant Multiplication (MCM)
Past implementations have used multiple cascaded adders. 

Results in larger delay and area
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Background 
•The Fast Fourier Transform (FFT)

Calculates the frequency components of a signal

•Uses:
Digital Signal Processing
Circuit Testing (Oscilloscopes)
Wi l I t t (Wi Fi) S t

Previous Work
Fahad Qureshi and Oscar Gustafsson. (2009).  Low-Complexity Reconfigurable 
Complex Constant Multiplication for FFTs. Linkoping, Sweden. IEEE Xplore.

•Uses trigonometric identities to reduce the number of multiplications and additions     
•Multiplexors create necessary coefficients
•Requires several adder circuits to create one output term
Th hit t t b b ilt f i i th b f ffi i t•We perform MCM for FFT using a Sum-of-Product (SOP) based realization 

Minimize delay and area
Utilize time-based compression
Final addition is executed by a hybrid adder

•Compared with best known technique/paper
Lower area for  high-resolution FFTs
Lower delay for all compared FFTs

Wireless Internet (Wi-Fi) Systems
Voice Recognition Systems

•How to Calculate the Transform
Multiply the input by N constants

sin(N), 0 < N < 360˚
Calculate the sum of the products

•The architecture must be rebuilt for any increase in the number of coefficients

16-point FFT Multiplier 32-point FFT Multiplier

Our Approach

Hybrid Adder
•Ripple-Carry Adder (Least Significant Bits)

Advantages
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Adder and Compressor Delays

Multiple Constant MultiplicationSum-of-Products Compression

Our Approach

Advantages
Little hardware necessary
We have the time to allow propagation of “carry” bits

Disadvantages
Linear increase in delay for each bit

•Kogge-Stone Adder (Middle Bits)
Advantages

Fastest adder structure available
Minimizes the penalty at the bits with the highest delays from the compressor

Disadvantages
Hardware intensive architecture, large amount of wiring

• Carry-Select Adder (Most Significant Bits)
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Advantages

Generates output before “carry-in” bit is ready”, no critical delay penalty
Ensures that the middle-bits determine critical delay of the hybrid adder

Disadvantages
Contains 2 Kogge-Stone Adder blocks, very hardware intensive
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ResultsExperimental Setup
•Experimental data was calculated using 65nm technology libraries
•Calculated delay based on capacitance load at each logic gate Area Comparison Delay Comparison

Conclusion
•Our design shows significant improvement in delay of the multiplier circuit

30% delay improvement when used for a 16-Point FFTCalculated delay based on capacitance load at each logic gate

Our Design
• Delay and Area were calculated exactly based on the circuits used in our architecture
• All circuit elements were considered when calculating Area

Comparative Design
• Calculations represent a lower-bound conservative estimate of the architecture
• Delay considers only the number of adders claimed in the research 

Ignores multiplexors
• Area only considers the number of adders claimed 

Ignores multiplexors and other adders used in the architecture 1500
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Area Comparison Delay Comparison y p
60% delay improvement when used for a 32-Point FFT

• Our design shows improvement in area for larger values of N
33% larger area when used for a 16-Point FFT
35% area improvement when used for a 32-Point FFT

• Our SOP based algorithm is only dependent on bit-size
Architecture can be changed to different values of N without changing circuit
The architecture can be scaled to larger bit sizes with no change in structure
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Future Work
•Include decoder analysis to determine Partial Product Terms for coefficients
• Implement and compare architectures on a FPGA to verify results
• Consider the use of 4:3 SOP Compression algorithm


